

Progress Report: Digital Twin Technology & Automated Ground-based Predatory Mite Releaser

Daeun "Dana" Choi
Assistant Professor
Smart Agriculture Laboratory
Gulf Coast Research and Education Center
University of Florida

Machine learning and field robotics for precision agriculture

Smart Agriculture Lab

Where Agriculture & Technology Meet to Build Future

Digital Twin for Strawberry Farm

Challenges in Ag Automation & Robotics

How to reduce the turnaround time for autonomous systems?

Synthetic Data

Exploring the Virtual Strawberry Farm

Digital Twin: a dynamic, virtual representation of a physical system, allowing for real-time "artificial" monitoring or simulation.

Benefits of Digital Twin

Speed up the development process of robots and AI

- Data augmentation for limited datasets.
- Training robust machine learning models.
- Testing new agricultural tools without risk.
 - Ensuring farmers' data privacy.

Procedural Modeling

- Rules-based approach for modeling rather than manual design of components
- Flexibility: Easier to modify model components instead of recreating the entire model again
- Randomization: Can randomize model

PLANTFACTORY

0.504347

Clump radius

More realistic strawberry Plant - Runner

Hardware Setup in the Field

Hardware Setup in Isaac Sim

Simulation

Camera Perspectives

Automated Labeling

RGBSemantic SegmentationInstance Segmentation

Results: Fruit Detection on Field Images

Digital Twin for Runner Cutting

Bidirectional communication between ROS and the hardware, as well as its reflection in the virtual environment of Isaac Sim

Current Challenge: need for innovative 3D Modeling

- Automatic rendering based on AI
- Speedy performance

Results: Fruit Detection

Training using Synthetic Data only

	ТР	FP	FN	Precision	Recall	F1-Score
Synthetic Data Gen- 1	56	2	86	0.96	0.39	0.56
Synthetic Data Gen- 2	127	17	15	0.88	0.89	0.89
Gen-1 + Gen 2	96	3	44	0.97	0.69	0.80
Real Images	129	2	12	0.98	0.91	0.95

Results: Fruit Detection

Trial 1							
	Fruit Count	Precision	Recall	F1-Score			
All Fruit	295	0.95	0.89	0.92			
Red Fruit	167	0.95	0.99	0.97			
White Fruit	61	1.00	0.87	0.93			
Green Fruit	67	0.94	0.72	0.82			
Trial 2							
All Fruit	134	0.89	0.75	0.81			
Red Fruit	39	0.87	0.95	0.91			
White Fruit	52	0.98	0.81	0.89			
Green Fruit	43	0.83	0.58	0.68			

Results: Fruit Sizing

Results: Fruit Sizing

Average Diameter Error: 1.5 mm

Average Diameter Error: 1.6 mm

Ground-based Predatory Mite Releaser

How to combat resistance to pesticides?

- Use of predatory mites like Amblyseius swirskii can help in this endeavor
- However, this is labor and time intensive and alternatives like aerial releases with drones are expensive and not very precise

<u>OBJECTIVES</u>

Develop a computer vision algorithm to identify and locate strawberry plants in a test field

Design and implement a mite dispensing system to release predatory mites on strawberry plants

Materials Used for System

Ground Vehicle

Mite Releaser Prototype

Vermiculite

- Testing with Vermiculite substrate
- Rotates at a speed of 30 RPM for 0.2 seconds (avg 1.8 ml/plant)
- Releases Uniform amount of Vermiculite per rotation

Camera

Screw Conveyor release mechanism

- Camera placed 28 inches from releaser
- Vehicle speed = 0.5 mile/hr
- Camera sends signal to the releaser when it reaches the intended plant.

Strawberry plants detection model

Parameter	Value		
Images	48		
Instances	246		
Precision	0.97		
Recall	0.99		
mAP* 0.5	0.96		
mAP 0.5:0.95	0.99		

Predicted

Confusion Matrix Strawberry-Plant 245 12 background 1 Strawberry Plant background True

- 200

- 150

- 100

- 50

- 0

Results

What We Will Improve

Hardware Limitations

Hardware Delay & Code Optimization

Variable Rate Application

Vehicle/Plant Row Misalignment

Environmental Limitations

Future Research Area

- Improved computation with faster computer processors
- Plant specific chilli thrips symptoms detection
- Automated vehicle navigation and predatory mite release
- Double plant row functionality
- Wind blocker

Acknowledgement

Namrata Dutt PhD Student

ANY QUESTIONS? YOU CAN FIND ME AT: DANA.CHOI@UFL.EDU

THANK YOU!