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INTRODUCTION

• Strawberry ranks 8th in produce & 4th in fruit

• Florida dominates strawberry market during cold season – December to April

• Strawberry fruit production:

• Flower & fruit production simultaneous throughout season

• Profit margin depends on timely harvest of ripened fruits

• Accurate yield prediction crucial for labor planning

• Mathematical models using weather data, flower count promising for accurate 
yield prediction

4/30/18 4



OBJECTIVE

• To predict strawberry yield based on flower count obtained from 
images acquired from a strawberry field

• To build a hardware system to capture high quality images of 
strawberry flowers from field

• To develop an algorithm to process images and give flower count in 
each image

• To synchronize image data with GPS location and create flower count 
map of the field
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YIELD PREDICTION

• Yield prediction method for strawberry plants proposed by Chandler & 
Mackenzie in 2009

• Temperature data along with mean flower count were used in 
mathematical model to predict yield

• Mean flower count was obtained over a week’s period manually

• Flower count obtained from a small region of the field was extrapolated 
to rest of the field

• Automated flower counting could improve prediction accuracy
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MATERIALS & METHODS

• Idea: count the number of flowers using images from field

• Strawberry plants – 8 to14 inches tall

• Flowers often occluded by leaves or other plant parts

• Fruits from different stages of maturation found alongside flowers

• Experiments conducted at two research facilities:

• Phase 1: Gulf Coast Research & Education Center (GCREC), Balm, Florida

• Phase 2: Plant Science Research & Education Unit (PSREU), Citra, Florida
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IMAGE ACQUISITION – PHASE I

• First version of algorithm was developed using images from Canon DSLR camera

• Images collected from Canon DSLR cameras for Phase I:
• Pros:  

• High resolution
• Low sensor noise (APS-C size sensor)
• Automatic exposure control
• Automatic focus control

• Cons
• Camera settings sensitive to external lighting variations
• Algorithm complexity increases due to diversity of imaging conditions
• Device cannot be interfaced directly with PC
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IMAGE ACQUISITION – PHASE II
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IMAGING HARDWARE

• Imaging cart was used to move cameras over 
strawberry plants using a tractor

• Imaging equipment used:
• 4 cameras

• Point grey grasshopper 4.1MP (1” sensor)

• 1024x1024 resolution

• 12 mm lens

• 12” x 12” field of view

• 2 machine vision LED lights to illuminate 
Field of View
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CAMERA 
PLACEMENT
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CAMERA INTERFACE WITH PC

RAM

FRAME BUFFER

CAMERA
PCIe USB 3.0 

HARDDISK 
(HDD/SSD)

• Grasshopper 4.1- USB 3.0 interface, frame buffer 128 MB

• Quad-channel PCIe – (5 Gbps per USB3.0 port) required to collect high speed data

• Videos acquired using Flir SpinviewTM in buffered mode

• Frames buffered before being written to disk to reduce frame drop

• Solid state drive preferred over hard-disk drives
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FIELD EXPERIMENTS

• For first phase images acquired using a Canon DSLR manually

• Images acquired under various working distances, lighting conditions used for 
experiments

• For second phase, imaging cart was used for data collection from field

• Cart pulled over rows of strawberry plants using tractor at a slow speed

• Length of one row: 220 ft

• Cart speed: 0.56 mph (0.826 ft/s)

• Camera Field of View (FoV): 12 in x12 in

• High speed imaging (< 60 fps) to combat motion blur
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IMAGE ACQUISITION IN FIELD
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IMAGE ACQUISITION IN FIELD
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FLOWER 
DETECTION 
ALGORITHM
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IMAGE PREPROCESSING

• Illumination variations – significant effects on algorithm performance

• Whole setup covered to control effects of external lighting

• CLAHE – Contrast Limited Adaptive Histogram Equalization to 
compensate small illumination variations 

• Image converted to LAB color-space & CLAHE applied to “L” channel 
only
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IMAGE SEGMENTATION

• Segmentation: 

• Grouping image pixels belonging to the same region

• Create superpixels from original image & progressively form larger 
clusters

• Quickshift segmentation used for super-pixel creation

• Region Adjacency Graphs (RAG) used for superpixel merging
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EXAMPLE PROCESSING STEPS
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IMAGE SEGMENTATION

Quickshift Segmentation Output

Zoomed in view – Each 
pixel group is a superpixel
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IMAGE SEGMENTATION CONTD.

Segments Merged using Region 
Adjacency Graph

Zoomed-in View
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FLOWER RECOGNITION

• Deep Learning (Artificial intelligence) model was used for feature extraction

• “Overfeat” (2014, Sermanet et al) model used as feature extractor

• Linear Support Vector Machine (SVM) for classification

• Linear model reduces risk of overfitting 

• Training, Testing, Validation datasets created from original Canon images in the 
ratio 60:20:20

• Regions containing flowers were cropped and used for feature extraction & 
training
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RESULTS

TOTAL 
NUMBER OF 
FLOWERS

CORRECTLY 
IDENTIFIED FLOWERS 
(TRUE POSITIVES)

MISSED FLOWERS 
(FALSE 
NEGATIVES)

NON-FLOWER OBJECTS 
INCORRECTLY IDENTIFIED 
AS FLOWERS (FALSE 
POSITIVES)

400 352 32 15
100% 88% 8% 4%
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RESULTS – PHASE I
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RESULTS – PHASE I
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RESULTS PHASE II
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RESULTS PHASE II
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DISCUSSIONS

• Images acquired using commercial cameras for initial experiments

• Effect of imaging conditions on algorithm performance studied

• Imaging distance

• Imaging angles – difficult to quantify due to varying flower orientations in 
scenes

• Lighting – external lighting – cloudy day, bright sunlight

• Algorithmic improvements for Phase II data in progress

4/30/18 30



CONCLUSIONS

• Computer vision algorithms promising for flower detection/counting problem

• Deep Neural Networks (Artificial Intelligence) yield high performance even 
under challenging conditions
• Large & rich dataset needed to fine tune model
• Data collected during phase 2 seems promising to exploit strengths of 

DNNs

• High-speed data acquisition crucial for strawberry plant imaging

• Mechanical design of imaging cart also has an important role to play in 
motion blur & hence final image quality
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FUTURE WORK
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IMAGE RECONSTRUCTION FROM DRONE IMAGES
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FUTURE WORK

• High speed camera on drone for 
imaging

• Drone imaging has the possibility of 
using down-wind to reveal hidden 
flowers

• A combined ground vehicle and drone 
imaging system could also lead to 
overall improved yield estimation 
accuracy
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