

STRAWBERRY FLOWER DETECTION USING COMPUTER VISION FOR EARLY YIELD PREDICTION

ARUMUGAM KALAIKANNAN¹, WON SUK 'DANIEL' LEE¹, NATALIA PERES³, CLYDE FRAISSE² 1 DEPARTMENT OF COMPUTER & INFORMATION SCIENCE & ENGINEERING, UNIVERSITY OF FLORIDA

2 DEPARTMENT OF AGRICULTURE AND BIOLOGICAL ENGINEERING, UNIVERSITY OF FLORIDA

3 GULF COAST RESEARCH AND EDUCATION CENTER, UNIVERSITY OF FLORIDA

UF FLORIDA

ACKNOWLEDGEMENT

• Florida Strawberry Growers Association

4/30/18 2

AGENDA

- Introduction
- Objective

UF FLORIDA

- Materials & Methods
- Computer Vision Algorithm
- Results
- Discussions
- Conclusions
- Future Work

3

INTRODUCTION

- Strawberry ranks 8th in produce & 4th in fruit
- Florida dominates strawberry market during cold season December to April
- Strawberry fruit production:
 - Flower & fruit production simultaneous throughout season
 - Profit margin depends on timely harvest of ripened fruits
- Accurate yield prediction crucial for labor planning
- Mathematical models using weather data, flower count promising for accurate yield prediction

OBJECTIVE

4/30/18

5

• To predict strawberry yield based on flower count obtained from images acquired from a strawberry field

F FLORIDA

- To build a hardware system to capture high quality images of strawberry flowers from field
- To develop an algorithm to process images and give flower count in each image
- To synchronize image data with GPS location and create flower count map of the field

YIELD PREDICTION

4/30/18

6

- Yield prediction method for strawberry plants proposed by Chandler & Mackenzie in 2009
- Temperature data along with mean flower count were used in mathematical model to predict yield

UF FLORIDA

- Mean flower count was obtained over a week's period manually
- Flower count obtained from a small region of the field was extrapolated to rest of the field
- Automated flower counting could improve prediction accuracy

MATERIALS & METHODS

- Idea: count the number of flowers using images from field
- Strawberry plants 8 to14 inches tall

UF FLORIE

- Flowers often occluded by leaves or other plant parts
- Fruits from different stages of maturation found alongside flowers
- Experiments conducted at two research facilities:
 - Phase 1: Gulf Coast Research & Education Center (GCREC), Balm, Florida
 - Phase 2: Plant Science Research & Education Unit (PSREU), Citra, Florida

IMAGE ACQUISITION - PHASE I

- First version of algorithm was developed using images from Canon DSLR camera
- Images collected from Canon DSLR cameras for Phase I:
 - Pros:

UF FLORIDA

- High resolution
- Low sensor noise (APS-C size sensor)
- Automatic exposure control
- Automatic focus control
- Cons
 - Camera settings sensitive to external lighting variations
 - Algorithm complexity increases due to diversity of imaging conditions
 - Device cannot be interfaced directly with PC

IMAGE ACQUISITION - PHASE II

 \bigcirc

4/30/18

9

IMAGING HARDWARE

- Port CREY
- Imaging cart was used to move cameras over strawberry plants using a tractor
- Imaging equipment used:
 - 4 cameras
 - Point grey grasshopper 4.1MP (1" sensor)
 - 1024x1024 resolution
 - 12 mm lens
 - 12" x 12" field of view
 - 2 machine vision LED lights to illuminate Field of View 4/30/18 11

CAMERA PLACEMENT

12

- Grasshopper 4.1- USB 3.0 interface, frame buffer 128 MB
- Quad-channel PCIe (5 Gbps per USB3.0 port) required to collect high speed data

4/30/18

14

- Videos acquired using Flir SpinviewTM in buffered mode
- Frames buffered before being written to disk to reduce frame drop
- Solid state drive preferred over hard-disk drives

FIELD EXPERIMENTS

- For first phase images acquired using a Canon DSLR manually
- Images acquired under various working distances, lighting conditions used for experiments
- For second phase, imaging cart was used for data collection from field
- Cart pulled over rows of strawberry plants using tractor at a slow speed
 - Length of one row: 220 ft

UF FLORIDA

- Cart speed: 0.56 mph (0.826 ft/s)
- Camera Field of View (FoV): 12 in x12 in
- High speed imaging (< 60 fps) to combat motion blur

4/30/18

15

IMAGE ACQUISITION IN FIELD

UF FLORIDA

(00:12)

IMAGE ACQUISITION IN FIELD

UF FLORIDA

17

FLOWER DETECTION ALGORITHM

IMAGE PREPROCESSING

- Illumination variations significant effects on algorithm performance
- Whole setup covered to control effects of external lighting
- CLAHE Contrast Limited Adaptive Histogram Equalization to compensate small illumination variations
- Image converted to LAB color-space & CLAHE applied to "L" channel only

4/30/18

IMAGE SEGMENTATION

4/30/18

20

- Segmentation:
 - Grouping image pixels belonging to the same region
- Create superpixels from original image & progressively form larger clusters
- Quickshift segmentation used for super-pixel creation
- Region Adjacency Graphs (RAG) used for superpixel merging

AN UNITED AN AGRICICUT REL LABORATORY

EXAMPLE PROCESSING STEPS

Original Image

4/30/18

Segments Merged using Region Adjacency Graph

FLOWER RECOGNITION

- "Overfeat" (2014, Sermanet et al) model used as feature extractor
- Linear Support Vector Machine (SVM) for classification
 - Linear model reduces risk of overfitting
- Training, Testing, Validation datasets created from original Canon images in the ratio 60:20:20

4/30/18

24

 Regions containing flowers were cropped and used for feature extraction & training

RESULTS

Phase I

UF FLORIDA

TOTAL NUMBER OF FLOWERS	CORRECTLY IDENTIFIED FLOWERS (TRUE POSITIVES)	MISSED FLOWERS (FALSE NEGATIVES)	NON-FLOWER OBJECTS INCORRECTLY IDENTIFIED AS FLOWERS (FALSE POSITIVES)
400	352	32	15
100%	88%	8%	4%

Phase II: currently images being analyzed

4/30/18

RESULTS – PHASE I

RESULTS PHASE II

RESULTS PHASE II

DISCUSSIONS

- Images acquired using commercial cameras for initial experiments
- Effect of imaging conditions on algorithm performance studied
 - Imaging distance

FLORIDA

- Imaging angles difficult to quantify due to varying flower orientations in scenes
- Lighting external lighting cloudy day, bright sunlight
- Algorithmic improvements for Phase II data in progress

4/30/18

CONCLUSIONS

- Computer vision algorithms promising for flower detection/counting problem
- Deep Neural Networks (Artificial Intelligence) yield high performance even under challenging conditions
 - Large & rich dataset needed to fine tune model
 - Data collected during phase 2 seems promising to exploit strengths of DNNs
- High-speed data acquisition crucial for strawberry plant imaging
- Mechanical design of imaging cart also has an important role to play in motion blur & hence final image quality

FUTURE WORK

(00:20)

32

(00:20)

4/30/18

UF FLORIDA

IMAGE RECONSTRUCTION FROM DRONE IMAGES

Aerial View of a portion of strawberry field

Zoomed-in view of Field

FUTURE WORK

- High speed camera on drone for imaging
- Drone imaging has the possibility of using down-wind to reveal hidden flowers
- A combined ground vehicle and drone imaging system could also lead to overall improved yield estimation accuracy

UF FLORIDA

