Practical Use of Light for Suppression of Plant Diseases Under Field Conditions

Funding USDA Organic Research and Extension Initiative USDA Specialty Crops Research Initiative National Research Council of Norway

Al Michaloski in 1990 and his invention: a tractor-drawn array of 48 UVC lamps. It suppressed powdery mildew on grapevines, but damage to foliage and fruit was severe.

Factors that govern design:

- Timing of treatments in relation to pathogen and host biology.
- Effective dose, ground speed, and reciprocity effects.
- Uniform dosing in a non-uniform environment.

Factor 1: Timing of UV treatments in relation to pathogen and host biology

 Pathogens have been attacking plants for millions of years amidst 24 hr cycles of light and darkness.

- Many pathogens have evolved systems that repair DNA.
- Repair systems are upregulated by blue and UVA, and downregulated by red light or darkness.
- UV treatments applied at night can use a relatively low dose to achieve a significant suppressive effect on the pathogen.

Effective dose, ground speed, and reciprocity effects

- Mode of action of UV from 250 to 280 nm is the same: damage to pathogen DNA.
- Efficacy of UV wavelengths from 250 to 280 nm is similar.
- Effective dose is near 100 Joules/m2.

50

Effective dose, ground speed, and reciprocity effects

- Available sources of UV
 - Fluorescent UVC lamps

• Fluorescent UVB lamps.

• UV LEDs

The need for speed

- 175X increase in speed requires increased radiant energy
 - Increase number of lamps and move them closer to plants?
 - Physical limits to size and density of arrays
 - Same dose at higher speed assumes perfect reciprocity
 - Does 1X2=2X1? This must be confirmed experimentally

Does reciprocity hold within range used in trials?

How can UV treatments be adapted to field use?

- Lamps over plants for 2-4 sec. rather than 2-4 min.
- UV must reach inner canopy and undersides of leaves
- Lamps are numerous and close to plants
- Reflector design is critical

2017 trials at Wish Farm

- Dose = 85 joules/M²
- Applied 2X per week
- Speed = 2.8 mph (4.5 kph)

How does UV efficacy compare to that of a standard fungicide program?

- UV treatments were significantly more effective than alternated sprays of Quintec and Torino.
- No significant effects on plant size or yield of fruit.

A second towable unit similar in design is being tested in a commercial high tunnel site in South Carolina

Summary

- Application speed is an overriding design consideration.
- Presently, fluorescent UVC lamps are the best technology for field apparatus moving at practical speeds (e.g., 3 mph).
- Reciprocity appears to hold across the range of intensity, dose, and duration used in our trials to date.
- Lamp array density and reflector design are critical to uniform dosing in an non-uniform environment.